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Abstract. We propose an experiment in which long wavelength discrete axial quasiparticle modes can be
imprinted in a 3D cigar-shaped Bose-Einstein condensate by using two-photon Bragg scattering experi-
ments, similar to the experiment at the Weizmann Institute [J. Steinhauer et al., Phys. Rev. Lett. 90,
060404 (2003)] where short wavelength axial phonons with different number of radial modes have been
observed. We provide values of the momentum, energy and time duration of the two-photon Bragg pulse
and also the two-body interaction strength which are needed in the Bragg scattering experiments in order
to observe the long wavelength discrete axial modes. These discrete axial modes can be observed when the
system is dilute and the time duration of the Bragg pulse is long enough.

PACS. 03.75.Kk Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid
flow – 32.80.Lg Mechanical effects of light on atoms, molecules, and ions – 67.40.Db Quantum statistical
theory; ground state, elementary excitations

Bose-Einstein condensates (BEC) [1] of alkali-atoms rep-
resent a wonderful testing ground of theories of weakly
interacting bosons. The atoms are spatially confined by
a harmonic trap and inhomogeneity makes these sys-
tems even more interesting. By changing the trapping
frequency one can produce quasi-1D, quasi-2D as well
as cigar-shaped but 3D Bose systems. Due to the re-
duction in the dimension and different shape, the ef-
fect of density and phase fluctuations become prominent
which produces many interesting features. Bragg spec-
troscopy [2,3] of a trapped BEC has become an impor-
tant tool to reveal many bulk properties such as dynamic
structure factor, verification of the Bogoliubov excita-
tion spectrum [4,5], observation of the Bogoliubov quasi-
particle amplitudes [6], momentum distribution and cor-
relation functions of a phase fluctuating quasi-1D Bose
systems [7,8]. Bragg spectroscopy has also been used for
tuning and measuring the scattering length of atoms by
using the optical Feshbach resonance [9].

In the Bragg scattering experiments, the condensate
is excited by using two Bragg pulses with approximately
parallel polarization, separated by an angle θ. The pulses
have a frequency difference ω determined by two acousto-
optic modulators. If a photon is absorbed from the higher-
frequency (ωh) beam and emitted into other (ωl), an ex-
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citation is produced with energy �ω = �(ωh − ωl) and
momentum �k, where k = |k| = 2kp sin(θ/2), and kp is
the photon wave number. The wave-vector k is adjusted
to be along the z-axis. Both the values of k and ω can be
tuned by changing the angle between two beams and vary-
ing their frequency difference. For small values of k, the
system is excited in the phonon regime and the response
is detected by measuring the net momentum imparted to
the system. Note that, all the momentum response ex-
periments [3–5] are limited to at most a quarter of radial
trapping period T0 (T0 = 2π/ω0) and the energy transfer
ω is chosen to be the order of kHz so that ω > ω0 (where
ω0 is the radial trapping frequency) which excites the dif-
ferent radial modes. In those experiments [3,4], the local
density approximation has been used to the actual inho-
mogeneous condensates, by using the Bogoliubov theory
of uniform gases.

The axial excitations of a cigar shaped BEC can be
divided into two regimes: short wavelength excitations
whose wavelength is much smaller than the axial size and
long wavelength excitations whose wavelength is equal
or larger than the axial size of the system. The short
wavelength axial phonons with different number of radial
modes of a cigar-shaped condensates which give rise to the
multibranch spectrum [10] has been resolved in a Bragg
spectroscopy with a long duration (tB > T0) of the Bragg
pulses [5,11]. In this experiment the condensate is excited
by the Bragg pulses and allow it for free expansion. During
the expansion of the condensate, these short wavelength
excitations decouple from the condensate itself, forming
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a separate cloud of atoms. The total momentum is mea-
sured by counting the atoms which is decoupled from the
condensate.

We consider a 3D Bose gas confined in a cigar-shaped
harmonic trap. As described in reference [5], the con-
densate consists of N = 105 atoms of 87Rb. The radial
and axial trapping frequencies are ω0 = 2π × 220 Hz
and ωz = 2π × 25 Hz (az =

√
�/mωz = 2.155 µm),

respectively. Recently, the low-energy axial modes of a
3D BEC has been studied theoretically [13] and exper-
imentally [14] by using a matter-wave interference tech-
nique. In those works [13,14], they have shown that the
long wavelength phonon do not form a separate cloud dur-
ing the expansion. At long expansion times and for a given
k, the excitations can separate out from the condensate
only if ka0 > kca0 = π(ωz/ω0)(η/2)1/2, while for k < kc,
they remain within the condensate at all times [13]. Here,
η = µ/�ω0 and µ is the chemical potential. Therefore, in
order to observe the long wavelength discrete axial modes
by using the Bragg spectroscopy as in reference [5], we
have to choose the parameters such that the low energy
excitations can separate out from the condensate for low
value of k. This is an alternative way to realize the low-
energy discrete axial modes in contrast to the matter-wave
interference technique [14].

In order to get the separate cloud of low-energy ax-
ial modes, the chemical potential η must be small. One
can reduce the two-body scattering length a by using the
Feshbach resonance [9] so that the axial size decreases and
the long wavelength excitations can separate out easily
from the condensate. If we take a = 13.63 × 10−11 m, in-
stead of the bare scattering length for rubidium and other
parameters are remain fixed as it is in reference [5], then
µ = 2�ω0. Of course, one can also get the chemical po-
tential µ = 2�ω0 by reducing the number of atoms in the
condensate while keeping the bare value of the two-body
scattering length. For this choice of a, kca0 = 0.35 and
we will show that the long wavelength excitations can be
separated out of the condensate. Note that for this choice
of scattering length, the system is still being 3D. The ra-
dial and axial sizes of the condensate are R0 ∼ 1.46 µm
and Z0 ∼ 12.78 µm, respectively, so that it becomes a
cigar-shaped condensate with the deformation parameter
λ = ω0/ωz ∼ 9.

Note that in the experiment [5], the energy transfer ω
is chosen to be the order of kHz (ω > ω0) which excites
the short wavelength axial phonons with different radial
modes. Since the wave-lengths of these excitations are very
small compared to the axial size and large compared to
the radial size, then the axial quasiparticle modes can be
described by the plane-wave states and the radial excita-
tions can be described by the discrete modes which are the
manifestation of the inhomogeneity along the radial direc-
tion. Therefore, the short wavelength phonons propagate
along the z-axis with different number of radial modes
which have been observed in reference [5]. If ω is the or-
der of ωz but less than the radial trapping frequency ω0

i.e. ωz ≤ ω � ω0, and the wave-vector of the Bragg pulse
is comparable to the inverse of the axial size then it would

excite only the different number of long wavelength ax-
ial modes, instead of short wavelength axial phonons with
different numbers of radial modes. Therefore, the wave-
length of these excitations are comparable to the axial size
and the effect of inhomogeneity along the axial direction
has to be included in the studies. The inhomogeneity along
the axial direction would be manifested by the presence
of the discrete axial modes. The discrete long wavelength
axial modes due to the finite size of the axial direction
can be observed by measuring the dynamic structure fac-
tor, S(k, ω), which is related to the momentum transferred
Pz(t) due to the low-energy two-photon Bragg scattering.

Within the Thomas-Fermi approximation (i.e. neglect-
ing the quantum pressure term), the hydrodynamic de-
scription for the axial density fluctuations δn(z) of a
3D cigar shaped Bose system has been studied in [15]. In
the dimensionless form, the equation for the δn(z) reads as

[(1 − z̃2)∇2
z̃ − 4z̃∇z̃ + 4ω̃2]δn(z̃) = 0, (1)

where z̃ = z/Z0 and ω̃ = ω/ωz. The eigenvalues of the
above equation are (ωj/ωz)2 = j(j + 3)/4 and the corre-
sponding normalized eigen functions are

δn(z̃) ∼ ψj(z̃) =

√
(j + 2)(2j + 3)
8(j + 1)πR2

0Z0
P

(1,1)
j (z̃) , (2)

where P (1,1)
j (z̃) is the Jacobi polynomial. Equation (1),

including the above eigenvalues and the eigen vectors are
valid only when the system parameter satisfies the con-
dition: µ � �ω0 � �ωz. In our method, the chemical
potential is not too large compared to the first radial ex-
citation, but it is quite large compared to the first axial
excitation. Therefore, the Thomas-Fermi approximation
is a reasonable approximation, since we are dealing with
the axial modes only and there is no coupling with the
radial modes. The quantum numbers j = 1 and j = 2
correspond to the axial center-of-mass and the breathing
modes with the frequencies ω1 = ωz and ω2 =

√
5/2ωz, re-

spectively. Only these two frequencies have been measured
with high accuracy by using the time-dependent modula-
tion of the trapping potential [16]. It is very difficult to
measure the frequencies of the other axial modes of large
quantum numbers by using the time-dependent modula-
tion of the trapping potential and therefore there are no
measurements of the frequencies of these higher modes. It
is useful to verify the frequencies of the other axial modes
(j > 2) to make sure that the energy eigen values de-
rived from the hydrodynamic approximation are correct.
These modes can be easily verified by using the Bragg
spectroscopy which is also our main concern of this work.

The dynamic structure factor is obtained from the
Fourier transform of the time-dependent density-density
correlation functions,

S(k, ω) =
∫
dt

∫
dzei(ωt−kz)〈δn̂(z, t)δn̂(0, 0)〉, (3)

where the density fluctuation operator is

δn̂(z̃, t) =
∑

j

i

√
�ωj

2g
ψj(z̃)e−iωjtα̂j +H.c. (4)
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Fig. 1. Plots of the weight factor Sj(k̃) vs. the dimensionless
wave-vector k̃ for j = 1, 2, and 3. A colour version of the figure
is available in electronic form at http://www.eurphysj.org.

Here, g = 4πa�2/m is the interaction strength determined
by the s-wave scattering length a and α̂j is the quasi-
particle operator of the jth mode. It is the density fluctu-
ation spectrum that can be measured in the two-photon
Bragg spectroscopy. At T = 0, the dynamic structure fac-
tor can be written as

S(k, ω) =
∑

j

Aj |ψj(k)|2δ(ω − ωj), (5)

where

Aj =
(

R2
0Z0

128π2aa2
z

) √
j(j + 3)(j + 2)(2j + 3)

(j + 1)

and ψj(k̃) =
∫ 1

−1 dz̃e
−ik̃z̃P

(1,1)
j (z̃) is the spatial Fourier

transform of P (1,1)
j (z̃). Here, k̃ = kZ0 is the dimensionless

wave vector. We rewrite the dynamic structure factor as
S(k̃, ω) =

∑
j Sj(k̃)δ(ω − ωj), where Sj(k̃) = Aj |ψj(k)|2

is the weight factor which determines the weight of the
Bragg-scattering cross-section in S(k, ω) of the corre-
sponding axial modes of energy �ωj . In Figure 1 we
show Sj(k̃) as a function of the dimensionless wave vec-
tor k̃ = kZ0 for the excitations j = 1, 2, and 3. Figure 1
shows how many axial modes significantly contribute to
S(k, ω) for a given momentum �k. It is clear from Fig-
ure 1 that the strongest weights for these collective modes
appear for kZ0 ≥ 2. As an example, for our choice of pa-
rameters which gives Z0 ∼ 5.932az, this means that the
momentum transfer �k in a Bragg scattering experiments
should be k ≥ 0.337a−1

z for N = 105 in order to pick up
the strong spectral weight from the low-energy collective
modes. However, in order to get the separate cloud of the
low-energy excited atoms from the condensate, the wave-
vector of the Bragg pulse must be k ≥ 0.35a−1

0 which im-
plies that the wave vector of the Bragg pulse must satisfy
the condition: kZ0 ≥ 6.

We compare the dynamic structure factor given in
equation (5) with the dynamic structure factor calcu-
lated within the local-density approximation (LDA). In
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Fig. 2. Plots of the dynamic structure factor S(k̃, ω) vs.
normalized frequency ω/ωz at T = 0. The dashed lines
shows the dynamic structure factor based on the LDA. A
colour version of the figure is available in electronic form at
http://www.eurphysj.org.

the LDA, the dynamic structure factor is given by the
analytic expression [3,17]

SLDA(k, ω) =
15�

2

8
(�2ω2 − E2

re)
Ereµ2

[
1 − (�2ω2 − E2

re)
2Ereµ

] 1
2

.

(6)
Here, Ere = �

2k2/2m is the recoil energy and µ =
0.5�ωz(15λ2Na/az)2/5 is the chemical potential. This an-
alytic expression can also be used for 3D cigar-shaped
trapped Bose systems. The above expression can be re-
cast for this system as,

SLDA(k, ω) =

15
2ωzC2

[

2
(
ω̃

k̃

)2

− k̃2

2C4

] [

1 − 2
(
ω̃

k̃

)2

+
k̃2

2C4

] 1
2

, (7)

where C = (15λ2Na/az)1/5 ∼ 5.93 for the experiment [5]
and ω̃ = ω/ωz. In Figure 2 we plot the dynamic structure
factor S(k̃, ω) vs. the frequency ω by using the LDA as
well as by using the Fourier transformation of the density-
density correlation function given in equation (5). For
finite-energy resolution we have replaced the delta func-
tion in equation (5) by the Lorentzian with a width of
Γ = 0.1ωz.

As one can see from Figure 2, the dynamic struc-
ture factor has multiple peaks. This phenomena is due
to the underlying discrete axial spectrum. Figure 2 shows
that for the given k̃ = 8, the most prominent peaks at
ω = 3.162ωz which corresponds to j = 5 and other small
peaks corresponds to the other quantum numbers. In or-
der to observe the j = 5 quasiparticle modes, the wave
number of the Bragg pulse should be k̃ = 8.0 which can
be obtained by suitable choices of the photon wave num-
ber (kp) and the angle (θ) between the Bragg beams. Note
that, k̃ = 8.0 implies ka0 ∼ 0.45 > kca0. Therefore, the
excited states will be separated out from the condensate
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and the momentum measurements can be performed. The
simplified LDA picture fails to produce the discrete struc-
ture of the axial modes, and it describes poorly the en-
velope of the spectrum of the dynamical structure factor.
However, the single peak in SLDA occurs at ωm ∼ 4.75
for k̃ = 8, but the locations of the highest peak in S(k, ω)
is ω/ωz = 3.162. Therefore, the highest peak in S(k, ω)
do not match with the peak in the SLDA(k, ω). The LDA
fails to describe the discrete structure of the modes be-
cause it assumes the system is locally uniform and it does
consider partially the effect of the finite axial size. We
have also carried out the same analysis for higher values
of k. For k̃ = 9, the condensate responds resonantly at
the frequency ω = 3.674ωz which corresponds to the axial
quantum number j = 6. In both the cases, the resonantly
excited states are in the phonon regime since kξ � 1,
where ξ =

√
�2/2mµ ∼ 0.168az is the healing length.

The behavior of these multiple peaks in the dynamic
structure factor can be resolved in two-photon Bragg spec-
troscopy, as shown by Steinhauer et al. [5]. In the two-
photon Bragg spectroscopy, the dynamic structure factor
can not be measured directly. Actually, the observable in
the Bragg scattering experiments is the momentum trans-
ferred to the condensate which is related to the dynamic
structure factor and reflects the behavior of the quasiparti-
cle energy spectrum. The populations in the quasiparticle
states can be controlled by using the two-photon Bragg
pulse. When the condensate is irradiated by an external
moving optical potential Vop = VB(t) cos(kz−ωt), the ex-
cited states are populated by the quasiparticle with energy
�ω and the momentum �k, depending on the value of k
and ω of the optical potential Vop. Here, VB is the intensity
of the Bragg pulse. Suppose the system is subjected to a
time-dependent Bragg pulse which is switched on at time
t > 0 and k is also along the z-direction. The momentum
transfer to the Bose system from the optical potential can
be calculated analytically either by using the Bogoliubov
transformation [18] or by using the phase-density repre-
sentations of the bosonic order parameter [19] and it is
given by

Pz(t) =
∑

j,k

�k〈α̂†
j(t)α̂j(t)〉

=
(
VB(t)

2�

)2 ∑

j

�kSj(k̃)Fj [(ωj − ω), t] − Fj [(ωj + ω), t],

(8)

where α̂j(t) is the time-evolution of the quasiparticle op-
erator of energy �ωj and

Fj [(ωj ± ω), t] =
(

sin[(ωj ± ω)t/2]
(ωj ± ω)/2

)2

.

For positive ω and a given k̃ such that Sj(k̃) is maxi-
mum, the momentum transferred Pz(t) is resonant at the
frequencies ω = ωj . The width of the each peak goes
like 2π/t. In order to resolve the different peaks, the dura-
tion of the Bragg pulses should be at least of the order of
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Fig. 3. Plots of the net momentum transferred Pz(t) vs.
normalized frequency ω/ωz at T = 0 when the dimension-
less wave-vector is k̃ = 8 for various time duration of the
Bragg pulse: tB = 1.1Tz (dashed), tB = 1.9Tz (solid) and
tB = 3.0Tz (dotted). Also, we have assumed VB = 0.05�ωz.
A colour version of the figure is available in electronic form at
http://www.eurphysj.org.

the axial trapping period Tz = 2π/ωz. Moreover, the dura-
tion of the Bragg pulse, tB , (atom-light interaction time)
is a main factor in the Bragg spectroscopy and it must
be of order tB > m/�k2 in order to populate the Bragg
reflected beam significantly [20]. For large t and ωz � ω0,
Pz(t) ∼ S(k, ω) [11]. In Figure 3, we plot the net momen-
tum transfer Pz(t) vs. the frequency ω for three different
choices of the time duration of the Bragg pulse. Figure 3
shows that the shape of the Pz(t) strongly depends on the
time duration of the Bragg pulse tB. When tB = 1.1Tz, the
Pz(t) is a smooth curve with a single peak at ω/ωz = 1.8,
where Tz = 2π/ωz is the axial trapping period which is
40 ms for the experiment [5]. When tB = 1.9Tz, there is a
little evidence of few small peaks start developing in the
Pz(t). When tB = 3Tz, the multiple peaks in the Pz(t)
appears prominently. The location of the peaks in Fig-
ure 3 for tB = 3Tz are exactly same as in Figure 2. It
implies that Pz(t) ∼ S((k, ω) for a long duration of the
Bragg pulse. Therefore, the multiple peaks in S(k, ω) are
resolved in Figure 3 only when the duration of the Bragg
pulse is tB � Tz. It should be noted that it is very diffi-
cult to use long duration of the Bragg pulse at the present
situation. It can induce a dipole oscillation of the whole
condensate in the trap [21] and the reflection of phonons
at the boundaries which might causes a broadening of the
response. We have checked that the Pz(t) reflects the dy-
namic structure factor calculated from the local density
approximation if tB < Tz. We also found that Figure 3
and the locations of the discrete peaks does not depend
on the intensity VB of the optical potential. We have also
studied Pz(t) for k̃ = 9 and find that there is a large peak
at ω = 3.674ωz corresponds to the quantum number j = 6
if the time duration of the Bragg pulse is longer than the
axial trapping period. This peak is also occurred in the
dynamic structure factor as we have already discussed.
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One can do the same analysis for other values of k
as long as only the low-energy axial excited states con-
tribute significantly in the dynamic structure factor and
these low-energy axial states should be less than the first
radial excitation. It would be interesting to study interme-
diate regimes of the energy and wave-vector where both
the radial and axial discrete states are excited simultane-
ously and it would provide a rich physics of the dynamic
structure factor as well as the momentum transfer to the
Bose system, due to the non-trivial structure of spectrum
of the density fluctuations and its corresponding eigen-
functions.

In conclusion, we have proposed an experiment in
which the long wavelength discretized axial modes in a
cigar-shaped (but 3D) condensate can be imprinted by us-
ing the Bragg scattering experiments, similar to the recent
experiment [5] where the short wavelength axial phonons
with discrete radial modes have been observed. We have
estimated the two-body scattering length a, also the values
of the momentum (�k) and energy (�ω) of the two-photon
Bragg pulses which are needed in the Bragg scattering ex-
periments in order to observe the low energy discrete axial
modes. These discrete axial modes can be observed when
the system is dilute enough and the time duration of the
Bragg pulse is long i.e. tB � Tz.
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